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Let us first consider the simple example of the free Schrödinger
equation in Rn,

i
∂

∂t
ϕ(t , x) = H0ϕ(t , x), ϕ(0, x) = ψ(x), H0 := −∆.

By an elementary calculation, using the Fourier transform, we
obtain that,

ϕ(t , x) = e−itH0ψ(x) =
1

(4πit)
n
2

∫
e

i|x−y|2
4t ψ(y) dy .

From this explicit formula we obtain the L1 − L∞ estimate,

‖ϕ(t , ·)‖L∞ ≤
1

(4π|t |)
n
2
‖f‖L1 .
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The proof of this estimate is elementary, and yet, it is a deep
result.
Recall that the Schrödinger equation is invariant under time
reversal: changing t to −t and taking complex conjugate.
In spite of this, if for some time, say t = 0, the solution is
integrable, then, it is bounded for all other times, and it goes
uniformly to zero, in L∞ norm, as t → ±∞, at the rate, 1/tn/2.

This expresses in a quantitative way the wave packet spreading
that we learn in the undergraduate quantum mechanics
classes: as the wave packet propagates it spreads, and as the
L2 norm is constant is has to go to zero in pointwise sense
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The following simple example illustrates the importance of this
dispersive estimate. Consider the nonlinear Schrödinger
equation in one dimension,

i
∂

∂t
ϕ(t , x) = − ∂2

∂x2 ϕ(t , x) + λ|ϕ(t , x)|p ϕ(t , x)

|ϕ(t , x)|
, t , x ∈ R,p ≥ 5,

ϕ(0, t) = ψ(x) ∈ H1.
where λ is a coupling constant.
Suppose that ‖ψ‖H1 < δ for δ small.Then, as the initial data is
small for small times the nonlinear part of the equation is very
small and the solution is dominated by the linear part. But, by
the L1 − L∞ estimate, as time increases the solution decreases
in pointwise sense, and the nonlinear part becomes even
smaller. Hence the solution is dominated for all times by the
linear part, and hence, there is no blowup, the solution exists
globally in time, and moreover for large times it is asymptotic to
a solution of the linear equation.
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That is to say, for small initial data the Cauchy problem has a
unique solution, global in time, and scattering holds, the wave
and scattering operators exist.
This argument is basically a proof of the claim that I made. One
just has to write an appropriate fixed point argument, and add
the necessary details.
This simple example illustrates the importance of dispersive
estimates, like the L1 − L∞ estimate, the related Lp − Lp′ ,
estimate, the Strichartz estimates, and other dispersive
estimates, in spectral theory and in nonlinear analysis. Actually,
this currently a very active area of research.
These comments serve the purpose of motivating the topic of
this talk, that is, of course, dispersive estimates for Schrödinger
equations with potentials.
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Consider the interacting Schrödinger equation,

i
∂

∂t
ϕ(t , x) = Hϕ(t , x), t ∈ R, x ∈ Rn, H := −∆ + V (x).

The appropriate L1 − L∞ estimate in this case would be,∥∥∥e−itHPac(H)
∥∥∥
B(L1,L∞)

≤ C
tn/2 ,

where Pac(H) is the projector onto the absolutely continuos
subspace of H.

The first result on this problem is from 1991.
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The pioneers

[16] J.L. Journé, A. Soffer and C.D. Sogge, 1991, three or more
dimensions.
Theorem. [16] Journé, Soffer, and Sogge, 1991.
Suppose that n ≥ 3, that,

〈x〉αV (x) : Hη → Hη, , η > 0, α > n + 4,

V̂ := FV ∈ L1.

Then, the Lp − Lp′ estimate holds,∥∥∥e−itHPac(H)
∥∥∥
B(Lp,Lp′ )

≤ C

|t |n( 1
p−

1
2 )
,

1 ≤ p ≤ 2, 1
p + 1

p′ = 1.
The motivation of Journé Soffer and Sogge was direct
low-energy scattering for nonlinear Schrödinger equations
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The pioneers

[23] R. W., 2000, the case of the line.

− d2

dx2 + V (x), in L2(R).

We say that V belongs to L1
γ if,∫

R
(1 + |x |)γ |V (x)|dx <∞.

Theorem.[31] R.W., 2000 Suppose that V ∈ L1
γ , where in the

generic case γ > 3
2 and in the exceptional case γ > 5

2 . Then,
for 1 ≤ p ≤ 2, and 1

p + 1
p′ = 1, the Lp − Lp′ estimate holds,∥∥∥e−itHPac(H)

∥∥∥
B(Lp,Lp′ )

≤ C

|t |(
1
p−

1
2 )
.
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The pioneers

Recall that the potential is exceptional if the zero energy
Schrödinger equation has a bounded solution and that it is
generic otherwise. If the potential is exceptional there is a zero
energy resonance or a half-bound state.
The motivation of R. W. was direct and inverse low-energy
scattering of nonlinear equations and also center manifolds,
see [25] R. W. 2000.

[34] R. W., 2003, the case of the half line.

H = − d2

dx2 + V (x), in L2(R+),

with Dirichlet boundary condition, ψ(0) = 0.
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The pioneers

Theorem, [34] R. W., 2003 Suppose that V satisfies∫ ∞
0

x |V (x)|dx <∞.

Then, for 1 ≤ p ≤ 2, and 1
p + 1

p′ = 1, the Lp−Lp′ estimate holds,∥∥∥e−itHPac(H)
∥∥∥
B(Lp,Lp′ )

≤ C

|t |(
1
p−

1
2 )
.

It is in this theorem where the Lp − Lp′ estimate was proven by
the first time under the optimal decay condition on the potential,
namely that xV (x) is integrable at infinity, and where it was
discovered that the Lp − Lp′ estimate holds under the optimal
decay condition whether there is a zero-energy resonance or
not. The fact that we do not need that the potential is locally
integrable up to zero is specific to the Dirichlet boundary
condition.
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The pioneers

In his book,
[4] J. Bourgain, Global Solutions of Nonlinear Schrödinger
Equations, Colloquium Publications 46, A.M.S., Providence R.
I., 1999,
J. Bourgain proposed as an open research problem to prove the
Lp − Lp′ estimates in one and two dimensions. The results of R.
W. 2000 where obtained independently of Bourgain’s proposal.
The motivation of J. Bourgain was the study of the properties of
the set where the solutions to the nonlinear Schrödinger
equations blowup.
The fact that J. Bourgain posed as an open problem the proof
of Lp − Lp′ estimates, played an important role in attracting the
interest of mathematicians into dispersive estimates.
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The sequel

After the early results that I described, the problem of
dispersive estimates became a very active area of research,
both in one dimension and in higher dimensions. Also other
equations like the Klein-Gordon and the Dirac equation, and
equations with magnetic field where considered. Furthermore,
discrete equations, like discrete Schrödinger and Dirac
equations, and quantum walks were studied. Besides the
original motivations, there is currently a great deal of activity in
connection with the stability of solitons.
Reviews of the literature are given in,
[28] W. Schlag, 2007.
[9] L. Fanelli, 2008.
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The proofs in one dimension and in higher dimensions are
fundamentally different. Since I will be mainly concerned with
the one dimensional case, below I comment only in the
literature in one dimension
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The Lp − Lp′ estimate for the Schrödinger equation on the line.

[10] M. Goldberg and W. Schlag, 2004. V ∈ L1
1 in the generic

case and V ∈ L1
2 in the exceptional case.

[6] P. D’Ancona, and S. Selberg, 2012. A potential in L1
2 plus a

step potential.

[7] I. E. Egorova, E. A. Kopylova, V. A. Marchenko, and G.
Teschl, 2016. V ∈ L1

1 both in the generic and the exceptional
cases.
This result has the optimal L1

1 condition as in [26] R. W, 2003, in
the half-line.
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The Lp − Lp′ estimate for the spherical Schrödinger equation.
[14] M. Holzleitner, A. Kostenko and G. Teschl, 2016.
[19] A. Kostenko, G. Teschl and J. Toloza, 2016.
[15] M. Holzleitner, A. Kostenko and G. Teschl, 2018.

The Lp − Lp′ estimate for the discrete Schrödinger equation.
[29] A. Stefanov, and P. G. Kevrekidis, 2007.
[8] I. Egorova, and E. A. Kopylova, and G. Teschl, 2015.
[4] D. Bambusi, and Z. Zhao, 2020
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The Lp − Lp′ estimate for the discrete Dirac equation.
[17] E. A. Kopylova and G. Teschl, 2017.
[18] E. A. Kopylova, and G. Teschl, 2020.

The Lp − Lp′ estimates for the Klein-Gordon equation.
[32] R. W., 2000.
[26] O. Prill, 2014.
[7] I. E. Egorova, E. A. Kopylova, V. A. Marchenko and G.
Teschl, 2016.
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The Lp − Lp′ estimate for the Schrödinger equation on trees.
[3] K. Ammari, and M. Sabri, 2020.

The Lp − Lp′ estimate for the Schrödinger equation on quantum
walks.
[22] M. Maeda, H. Sasaki, E. Segawa, A. Suzuki, and K.
Suzuki, 2018.
[23] M. Maeda, H. Sasaki, E. Segawa, A. Suzuki, and K.
Suzuki, 2020.
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Matrix Schrödinger Equation

The matrix Schrödinger equations find they origin at the very
beginning of quantum mechanics. They are important to
describe particles with internal structure, like spin, for example
the Pauli equation, they have many applications in atomic
molecular and nuclear physics. They are also relevant in
quantum graphs, for example a star graphs is equivalent to a
matrix Schrödinger equation with a diagonal potential.
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Matrix Schrödinger Equation on the Half-Line

Let us consider the matrix Schrödinger equation on the half-line
with general selfadjoint boundary condition

i∂tu (t , x) =
(
−∂2

x + V (x)
)

u (t , x) , t ∈ R, x ∈ R+,
u (0, x) = u0 (x) , x ∈ R+,

− B†u (t ,0) + A† (∂xu) (t ,0) = 0,

where R+ := (0,+∞), u(t , x) is a function from R× R+ into
Cn,A,B are constant n × n matrices, the potential V is a n × n
selfadjoint matrix-valued function of x , i.e.

V (x) = V † (x) , x ∈ R+,

where the dagger denotes the matrix adjoint. We suppose that
V is L1

1, i.e. that it is a Lebesgue measurable matrix-valued
function and, ∫

R+

(1 + x) |V (x)|dx <∞.
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We find it convenient to state the general selfadjoint boundary
condition requiring that the matrices A and B satisfy

B†A = A†B,

and
A†A + B†B > 0.

We denote by

H = HA,B,V := − d2

dx2 + V (x),

the selfadjoint realization in L2 (R+) with the general selfadjoint
boundary condition.
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Theorem. [25] I. Naumkin, and R. W., 2021.
Suppose that the potential V is selfadjoint and belongs to L1

1.
Then, for any p ∈ [1,2] and p′ such that 1/p + 1/p′ = 1, the
Lp − Lp′ estimate holds,∥∥∥e−itHPac(H)

∥∥∥
B(Lp,Lp′)

≤ C

|t |1/p−1/2 .

For a star graph with the Kirchoff boundary condition and a
potential in L1

γ , γ > 5/2, the Lp − Lp′ estimate, was proven in
[24] F. Ali Mehmeti, K. Ammari and S. Nicaise, 2015.

In the case of star graphs with potential identically zero, and
with general boundary conditions, the Lp − Lp′ estimate, was
obtained by [11] A. Grecu, and L. I. Ignat, 2019.
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Corollary. Strichartz estimate.[25] I. Naumkin, R.W., 2021. Let
(q, r) be an admissible pair, that is, 2/q = 1/2− 1/r and
2 ≤ r ≤ ∞. Then, for every ϕ ∈ L2 (R+) , the function
t → e−itHPac(H)ϕ belongs to
Lq (R,Lr (R+)) ∩ C

(
R,L2 (R+)

)
,and∥∥∥e−itHPac(H)ϕ

∥∥∥
Lq(R,Lr (R+))

≤ C ‖ϕ‖L2(R+) , ϕ ∈ L2 (R+
)
.

Moreover, let I ⊂ R be an interval. For an admissible pair (γ, ρ) ,

let f ∈ Lγ
′
(

I,Lρ
′
(R+)

)
, where 1/γ + 1/γ′ = 1 and

1/ρ+ 1/ρ′ = 1. Then, for t0 ∈ Ī, the function

t → Φf (t) =

∫ t

t0
e−i(t−s)HPac(H)f (s) ds, t ∈ I,

belongs to Lq (I,Lr (R+)) ∩ C
(̄
I,L2 (R+)

)
and for a I

independent constant C

‖Φf‖Lq(I,Lr (R+)) ≤ C ‖f‖Lγ′(I,Lρ′ (R+)) , for every f ∈ Lγ
′
(

I,Lρ
′ (
R+
))
.

Ricardo Weder. UNAM Dispersive Estimates



The result of I. Naumkin, and R. W., 2021 shows that the
Lp − Lp′ estimate holds for general matrix Schrödinger
operators on the half-line for potentials in L1

1, whether there is
zero-energy resonance or not, as was first proven by R. W.,
2003, in the scalar case.

We are in the generic case if the Jost matrix is invertible at zero
energy and we are in the exceptional case if the Jost matrix is
not invertible at zero energy. In the exceptional case there is a
zero-energy resonance (or half-bound state), and in the generic
case there is no zero-energy resonance.
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The matrix Schrödinger equation on the full-line

A 2n × 2n matrix Schrödinger equation on the half-line is
unitarily equivalent to a n × n matrix Schrödinger equation on
the full-line with a point interaction at x = 0.
We define the unitary operator U from L2 (R+;C2n) onto
L2 (R;Cn) by

φ (x) = Uψ (x) :=

{
ψ1 (x) , x ≥ 0,
ψ2 (−x) , x < 0,

for a vector-valued function ψ = (ψ1, ψ2)T , where
ψj ∈ L2 (R+;Cn) , j = 1,2. Let the potential in the half-line
Schrödinger equation be the diagonal matrix

V (x) := diag{V1 (x) ,V2 (x)},

where Vj , j = 1,2 are selfadjoint n × n matrix-valued functions
that satisfy Vj ∈ L1

1(R+).
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Under U the Hamiltonian H is transformed into the following
Hamiltonian in the full-line,

HR := U HU†, D[HR] := {φ ∈ L2 (R;Cn) : U†φ ∈ D[H]}.
The operator HR is a selfadjoint realization in L2 (R;Cn) of the
formal differential operator −∂2

x + Q(x) where,

Q (x) =

{
V1 (x) , x ≥ 0,

V2 (−x) , x < 0.

Let us write the 2n × 2n matrices A,B as follows,

A =

[
A1
A2

]
, B =

[
B1
B2

]
,

with Aj ,Bj , j = 1,2, being n × 2n matrices. The functions in the
domain of HR satisfy the following transmission condition.

−B†1φ(0+)− B†2φ(0−) + A†1(∂xφ)(0+)− A†2(∂xφ)(0−) = 0.
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Then, u(t , x) is a solution of the half-line Schrödinger equation
if and only if v(t , x) := Uu(t , x) is a solution of the following
full-line matrix Schrödinger equation,

i∂tv (t , x) =
(
−∂2

x + Q (x)
)

v (t , x) , t ∈ R, x ∈ R,
v (0, x) = v0 (x) := Uu0 (x) , x ∈ R,

−B†1v(t ,0+)− B†2v(t ,0−) + A†1(∂xv)(t ,0+)− A†2(∂xv)(t ,0−) = 0.

For example, let us take,

A =

[
0n In
0n In

]
, B =

[
−In Λ
In 0n

]
,

where Λ is a selfadjoint n × n matrix. In this case,the
transmission condition is given by,

v(t ,0+) = v(t ,0−) = v(t ,0), (∂xv)(t ,0+)−(∂xv)(t ,0−) = Λv(t ,0).

This corresponds to a Dirac delta point interaction at x = 0 with
coupling matrix Λ. If Λ = 0, v(t , x) and (∂xv)(t , x) are
continuous at x = 0 and we get the matrix Schrödinger
equation without a point interaction.
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Using this unitary transformation we obtain the following results.
Theorem I. [25] Naumkin, R. Weder, 2021.
Suppose that Q (x) , x ∈ R, is a n × n selfadjoint matrix-valued
function such that Q ∈ L1

1 (R) . Then, for any p ∈ [1,2] and p′

such that 1/p + 1/p′ = 1, the Lp − Lp′ estimate holds,∥∥∥e−itHRPac(HR)
∥∥∥
B(Lp(R),Lp′ (R))

≤ C

|t |1/p−1/2 .

I am not aware of any result on the Lp − Lp′ estimate for matrix
Schrödinger equations on the full-line, even without point
interaction. In the scalar case the result with point interaction is
new.
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Corollary. Strichartz estimate.[25] I. Naumkin, R.W., 2021.
Let (q, r) be an admissible pair, that is, 2/q = 1/2− 1/r and
2 ≤ r ≤ ∞. Then, for every ϕ ∈ L2 (R) , the function
t → e−itHPac(HR)ϕ belongs to Lq (R,Lr (R)) ∩ C

(
R,L2 (R)

)
, and∥∥∥e−itHPac(HR)ϕ

∥∥∥
Lq(R,Lr (R))

≤ C ‖ϕ‖L2(R) , ϕ ∈ L2 (R) .

Moreover, let I ⊂ R be an interval. For an admissible pair (γ, ρ) ,

let f ∈ Lγ
′
(

I,Lρ
′
(R)
)
, where 1/γ + 1/γ′ = 1 and

1/ρ+ 1/ρ′ = 1. Then, for t0 ∈ Ī, the function

t → Φf (t) =

∫ t

t0
e−i(t−s)HPac(H)f (s) ds, t ∈ I,

belongs to Lq (I,Lr (R)) ∩ C
(̄
I,L2 (R)

)
and for a I independent

constant C

‖Φf‖Lq(I,Lr (R+)) ≤ C ‖f‖Lγ′(I,Lρ′ (R)) , for every f ∈ Lγ
′
(

I,Lρ
′
(R)
)
.
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The Lp boundedness of the wave operators

K. Yajima introduced a different method to prove dispersive
estimates in [36] K. Yajima, 1995. See [37] K. Yajima, 2020, for
a review and recent results.
Denote H0,s := −∆, and Hs := H0,s + V in L2(Rn),n ≥ 1.
Assume that the wave operators,

W±,s = s - lim
t→±∞

eitHs e−itH0,s ,

exist and are complete. Then, by the intertwining relations,

f (H)Pac(H) = W±,sf (H0) W †
±,s.

If the wave operators are bounded in Lp(Rn),1 ≤ p ≤ ∞, then,
from the dispersive estimates for H0,s we obtain the dispersive
estimates for Hs.
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The boundedness in Lp of the wave operators is an interesting
problem on its own, and it has been proved in many
circumstances. However, it often fails in the presence of
threshold singularities if n ≥ 2.
In [20] R. W. ,1999, it has been proved that in the
one-dimensional case the wave operators are not always
bounded in L1 and in L∞

Theorem, [20] R. W. 1999 Suppose that V ∈ L1
γ(R), with

γ > 3/2 in the generic case and γ > 5/2 in the exceptional
case. Then, the wave operators W±,s and W ∗

±,s are bounded in
Lp,1 < p <∞. Furthermore, W±,s are bounded from L1 into
L1

weak, and W ∗
± are bounded from L∞ into BMO. Moreover, in

the exceptional case if limx→−∞ f (0, x) = 1, the W±,s and the
W ∗
±,s are bounded in L1 and in L∞.

This is due to the presence of a term with the Hilbert transform
in the low-energy asymptotics
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In the matrix case on the half-line the boundedness of the wave
operators was proven in [35] R. W. 2021.
We define

W± := s - lim
t→±∞

eitH e−itH0 .

Theorem. [35] R. W., 2021.
Suppose that the potential V is selfadjoint and belongs to L1

1.
Then the wave operators W± are bounded in Lp,1 < p <∞. If,
moreover, V ∈ L1

γ , γ > 5/2, and S(0) = S∞ = I, then, the wave
operators W± are bounded in L1 and in L∞.
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We have S∞ = I if in the diagonal representation of the
boundary matrices there are no Dirichlet boundary conditions.
Further, we have S(0) = I, if we are in the exceptional case and
there are n linearly independent bounded solutions of the
zero-energy stationary Schrödinger equation that satisfy the
boundary condition, i.e. n linearly independent zero-energy
resonances, or half-bound states.
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The proofs

We state results that we need and that are in,
[2] T. Aktosun and R. Weder, Direct and Inverse Scattering for
the Matrix Schrödinger Equation, Applied Mathematical
Sciences 203 , Springer Verlag, New York, 2021.
Consider the stationary matrix Schrödinger equation on the
half-line

−ψ′′ + V (x)ψ = k2ψ, x ∈ R+,

V (x) is selfadjoint and satisfies,

V ∈ L1 (R+
)
.

The wavefunction ψ(k , x) may be either a n × n matrix-valued
function or it may be a column vector with n components.
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Recall that the more general selfadjoint boundary condition can
be expressed in terms of two matrices A and B as

−B†ψ (0) + A†ψ′ (0) = 0,

where A and B satisfy

B†A = A†B,

A†A + B†B > 0.

For other, equivalent, characterizations of the boundary
conditions see [20] V. Kostrykin and R. Schrader, 1999, [13] M.
S. Harmer,2004, and [27] F. S. Rofe-Beketov, and A. M.
Kholkin, 2005.
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Let Ã and B̃, given by

Ã = − diag[sin θ1, ..., sin θn], B̃ = diag[cos θ1, ..., cos θn],

with real parameters θj ∈ (0, π]. For the matrices Ã, B̃, the
boundary conditions are given by

cos θjψj (0) + sin θjψ
′
j (0) = 0, j = 1,2, ...,n.

The special case θj = π corresponds to the Dirichlet boundary
condition and the case θj = π/2 corresponds to the Neumann
boundary condition. In general, there are nN ≤ n values with
θj = π/2 and nD ≤ n values with θj = π, and hence there are
nM remaining values, with nM = n − nN − nD such that those
θj -values lie in the interval (0, π/2) or (π/2, π), i.e., they
correspond to mixed boundary conditions.
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It is proven in T. Aktosun, and R. W, 2021, that for any pair of
matrices (A,B) that characterize the boundary conditions, there
is a pair of matrices (Ã, B̃), a unitary matrix M and two
invertible matrices T1,T2 such

A = M ÃT1M†T2, B = M B̃T1M†T2,

and, further,
HA,B,V = MHÃ,B̃,M†VMM†.

This shows that the case of general boundary conditions is
unitarily equivalent to the case of diagonal boundary matrices,
where the boundary conditions are just the usual ones of the
scalar case.
This is technically very useful. For example, in the case where
the potential is zero, the proof of the L1 − L∞ estimate follows
immediately from the explicit representation of the unitary
propagator in the scalar case with Dirichlet, Neumann and
mixed boundary conditions.
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The representation with diagonal boundary matrices it is not
only technically convenient, but it is essential to understand the
low- and high- energy limit of the Jost and the scattering
matrices, because they depend explicitly in the number of
Dirichlet boundary conditions, nD in the diagonal
representation.
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[1] Z. S. Agranovich and V. A. Marchenko, 1963.
For each fixed k ∈ C+\{0} there exists a unique n × n
matrix-valued Jost solution f (k , x) satisfying the asymptotic
condition as x →∞,

f (k , x) = eikx (I + o (1)) , f ′(k , x) = eikx [ik I + o(1)].

The Jost matrix J (k) is the n × n matrix-valued function of k ,

J (k) = f (−k∗,0)† B − f ′ (−k∗,0)† A, k ∈ C+.

The Jost matrix J (k) is analytic for k ∈ C+, continuous for
k ∈ C+ \ {0} and invertible for k ∈ R \ {0}. If furthermore, the
potential belongs to L1

1 then, the Jost matrix is continuos for
k ∈ C+.
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From the Jost matrix J (k) we construct the scattering matrix
S (k) , which is a n × n matrix-valued function of k given by

S (k) = −J (−k) J (k)−1 , k ∈ R.

In the exceptional case where J(0) is not invertible the
scattering matrix is defined as above only for k 6= 0. However,
for potentials in L1

1 the limit S(0) := limk→0 S(k) exists in the
exceptional case.
In terms of the Jost solution f (k , x) and the scattering matrix
S(k) we construct the physical solution

Ψ (k , x) = f (−k , x) + f (k , x) S (k) , k ∈ R.
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The physical solution Ψ is the basis to construct the
generalized Fourier maps for the absolutely continuous
subspace of H. We define,

(
F±ψ

)
(k) =

√
1

2π

∫ ∞
0

(Ψ (∓k , x))† ψ (x) dx ,

for ψ ∈ L2 ∩ L1.
For any Borel set O let E(O) be the spectral projector of H for
O. Then, ∥∥F±ψ

∥∥
L2 =

∥∥E(R+)ψ
∥∥

L2 .

Thus, F± extend to bounded operators on L2 that we also
denote by F±.
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H has no positive bound states, and the negative spectrum of
H consists of isolated bound states of multiplicity smaller or
equal than n, that can accumulate only at zero.
H has no singular continuous spectrum and its absolutely
continuous spectrum is given by [0,∞).
The generalized Fourier maps F± are partially isometric with
initial subspace Hac (H) and final subspace L2.

F±H
(
F±
)†

= k2.

If V ∈ L1
1, there is no bound state at k = 0 and the number of

bounded states of H is finite.
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We observe that in particular we have,

e−itHPac(H) =
(
F±
)† e−itk2

F±.

Using the definition of the physical solution Ψ , we get

e−itHPcψ = (2π)−1
∫ ∞

0
T (x , y)ψ (y) dy ,

where

T (x , y) =

∫ ∞
−∞

e−itk2
(

f (−k , x) (f (−k , y))†+

f (k , x) S (k) (f (−k , y))†
)

dk .

This equation is the starting point of the proof of the L1 − L∞

estimate.
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The Jost solution f (k , x) has the representation

f (k , x) = eikx I +

∫ ∞
x

eikyK (x , y) dy ,

where the matrix K (x , y) satisfies,

K (x , y) = 0, y < x , x , y ∈ [0,∞),

|K (x , y)| ≤ 1
2

eσ1(x)σ

(
x + y

2

)
, x , y ∈ [0,∞).

with

σ (x) =

∫ ∞
x
|V (y)|dy , σ1 (x) =

∫ ∞
x

y |V (y)|dy , x ≥ 0.
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Using this representation of the Jost solution we decompose
T (x , y) into six terms,

T (x , y) =
5∑

j=0

Tj(x , y).

We have to estimate each one of them. Let us concentrate in
T3, that is given by,

T3 =

√
π√
it

∫ ∞
−∞

ei(x+y−z)2/4tFs (z) dz,

where Fs is the Fourier transform of, S(k)− S∞,

Fs (y) =
1

2π

∫ ∞
−∞

[S (k)− S∞] eikydk , y ∈ R,

with,
S∞ := lim

k→±∞
S(k).
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|T3(x , y)| ≤
√
π√
|t |
‖Fs‖L1 .

Imply that ∣∣∣∣∫ ∞
0
T3(x , y)ψ(y) dy

∣∣∣∣ ≤ √π√|t |‖Fs‖L1 ‖ψ‖L1 .
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[25] I. Naumkin, and R.W., 2021 Suppose that the potential V is
selfadjoint and that V ∈ L1

1. Then,

Fs ∈ L1(R).

The key input for the proof of this theorem are precise low- and
high-energy asymptotics for the Jost and the scattering
matrices that are given in

[2] T. Aktosun and R. Weder, Direct and Inverse Scattering for
the Matrix Schrödinger Equation, Applied Mathematical
Sciences 203 , Springer Verlag, New York, 2021.
We proceed to discuss these estimates.
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Small-k Behavior of J(k), J(k)−1 and of S(k)

Let µ be the geometric multiplicity of the zero eigenvalue of
J(0), and ν the algebraic multiplicity.
The Jordan canonical form of J(0)

S−1J(0)S = ⊕κα=1Jnα(λα),

where Jnα(λα) is the nα × nα Jordan block

Jnα(λα) =



0 1 0 . . . 0 0

0 0 1 . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . 0 1

0 0 0 . . . 0 0


, α = 1, . . . , µ,
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Jnα(λα) =



λα 1 0 . . . 0 0

0 λα 1 . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . λα 1

0 0 0 . . . 0 λα


, α = µ+ 1, . . . , κ.

Let us denote
M̃ := S−1MS

for any n × n matrix M.
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P2J̃(0) P1 = diag{0µ, Iν−µ, Jnµ+1(λµ+1), . . . , Jnκ(λκ)},

where 0µ denotes the µ× µ zero matrix.

P1 =

[
Π1 0

0 In−ν

]
, P2 =

[
Π2 0

0 In−ν

]
,

for some permutation matrices Π1 and Π2.
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Theorem T. Aktosun, and R. W., 2021.
Assume that V is selfadjoint and belongs to L1

1. Then, as k → 0
in C+ the Jost matrix J(k) has the behavior

J(k) = SP−1
2

[
kA1 + o(k) kB1A1 + o(k)

kC1 + o(k) D0 + o(1)

]
P1S−1,

the inverse Jost matrix J(k)−1 has the behavior, as k → 0 in
C+,

J(k)−1 = SP1

 1
k
A−1

1 [Iµ + o(1)] −A−1
1 B1D−1

0 + o(1)

−D−1
0 C1A−1

1 + o(1) D−1
0 + o(1)

P2S−1,
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and the scattering matrix S(k) is continuous at k = 0 and we
have S(k) = S(0) + o(1) as k → 0 in R with

S(0) = SP−1
2

[
Iµ 0

2C1A−1
1 −In−µ

]
P2S−1,

where µ is the geometric multiplicity of the zero eigenvalue of
the zero-energy Jost matrix J(0).

Ricardo Weder. UNAM Dispersive Estimates



Large-k behavior of S(k).

We define,

Q2(k) :=
1
2

∫ ∞
0

dy e2ikyV (y),
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Theorem T. Aktosun, and R.W., 2021.
Assume that V is selfadjoint and that, V ∈ L1(R+). Then,

S(k) = S0(∞) +
G(k)

ik
+ O(1/k2), k → ±∞,

where
S0(∞) := Mdiag{InM ,−InD , InN}M

†,

is the high-energy limit for potential zero. M is a unitary matrix
and G(k) is the matrix defined as

G(k) := −2MZ1M† + Q2(0)S0(∞) + S0(∞) Q2(0)+

S0(∞)Q2(k)S0(∞) + Q2(−k),

with

Z1 := diag{cot θ1, . . . , cot θnM ,0nD ,0nN},

where, 0j is the zero j × j matrix.
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